
M2.(a) (i) Hydrogen bonds / H bonds

Not just hydrogen.

1

(ii)

M1 – lone pair on each N.

M2 – correct partial charges must be shown on the N and H of a bond in each molecule.

M3 – for the H bond from lone pair on N to the $H\delta^{\scriptscriptstyle +}$ on the other NH $_{\scriptscriptstyle 3}$ molecule.

If not ammonia molecules, CE = 0/3.

3

(b) Lone pair / both electrons / 2 electrons / electron pair on $N(H_{\mbox{\tiny 3}})$ is donated to $B(Cl_{\mbox{\tiny 3}})$

Allow both electrons in the bond come from $N(H_3)$.

1

(c) (i) The power of an <u>atom</u> or <u>nucleus</u> to withdraw or attract electron<u>s</u> or electron density or a pair of electrons (towards itself)

1

in a covalent bond

(ii) LiF OR Li₂O OR LiH

Allow Li₂O₂, allow correct lithium carbide formula.

1

(iii) BH₃ / H₃B

Allow B₂H₆ / H₆B₂

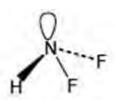
Do not allow lower case letters.

[9]

1

M3. (a) Iodine has more electrons / iodine is bigger (atom or molecule) / iodine has bigger M, / bigger surface area

1


<u>Stronger</u> / <u>more</u> van der Waals forces / vdw / London / temporarily induced dipole / dispersion forces <u>between</u> molecules

1

Stronger VdW intermolecular forces = M2
If stated VdW between atoms lose M2

1

(b) (i)

Mark is for 3 bp and 1 lp attached to N (irrespective of shape)

1

F_B-F

Mark is for 3 bp and 0 lp attached to B (irrespective of shape)

	NHF ₂ shape - pyramidal / trigonal pyramid Accept tetrahedral / triangular pyramid	1	
	BF₃ shape - <u>trigonal planar</u> Not triangular or triangular planar	1	
	(ii) 107° Allow 106-108°	1	
(c)	Hydrogen bonds Allow H-Bonds Not just Hydrogen Apply list principle eg Hydrogen bonding and dipole-dipole = 0	1	
(d)	Coordinate / dative covalent / dative If covalent mark on If ionic / metallic CE = 0	1	
	Lone pair / both electrons/ 2 electrons on N(HF ₂) donated (to BF ₃) Direction of donation needed here	1	[10
M4 (a)	Giant covalent / giant molecular / macromolecular		
VI4. (a)	Giant covalent / giant molecular / macromolecular Not giant alone. Not covalent alone.	1	
(b)	Shared pair of electrons / one electron from each C atom	1	

(c) No delocalised / free / mobile electrons

Allow all (outer) electrons involved in (covalent) bonds.

Ignore ions.

1

1

(d) CH

Allow HC

C and H must be capital letters.

[4]

M5.(a) Covalent

If not covalent CE = 0/2

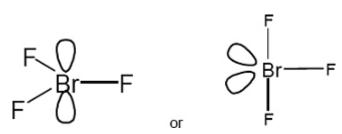
If dative covalent CE = 0/2

If blank mark on

Ignore polar

If number of pairs of electrons specified, must be 3

1


Shared pair(s) of electrons / one electron from Br and one electron from F

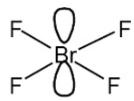
Not 2 electrons from 1 atom

Not shared pair between ions/molecules

1

(b) (i)

BrF₃ should have 3 bp and 2 lp and correct atoms for the mark


Penalise FI

BrF₃ if trigonal planar shown = 120° Allow $84 - 90^{\circ}$ or 120° and ignore 180°

or if T shape shown 84 – 90° *Irrespective of shape drawn*

1

(ii)

BrF_∗ should have 4 bp and 2 lp and all atoms for the mark(ignore sign)
Allow Fl

1

BrF₄⁻ 90° Only Ignore 180°

1

(c) Ionic or (forces of) attraction between ions / bonds between ions

If molecules, IMF, metallic, CE =0

If covalent bonds mentioned, 0/3, unless specified within the BrF₄ ion and not broken

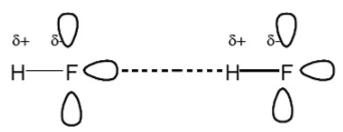
Ignore atoms

1

Strong (electrostatic) attraction / strong bonds / lots of energy needed to break bonds

1

Between K⁺ and BrF₄⁻ ions/oppositely charged ions / + and – ions


If ions mentioned they must be correct

Strong bonds between + and – ions = 3/3

(d) (i) Hydrogen <u>bonds/hydrogen bonding/H bonds/H bonding</u> Not just hydrogen

1

(ii)

One mark for 4 partial charges

One mark for 6 lone pairs

One mark for H bond from the lone pair to the $H\delta$ +

Allow FI

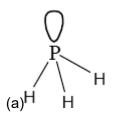
If more than 2 molecules are shown they must all be correct. Treat any errors as contradictions within each marking point.

CE = 0/3 if incorrect molecules shown.

3

(e) vdw / van der Waals forces between molecules

QoL


Not vdw between HF molecules, CE = 0/2 vdw between atoms, CE = 0/2 If covalent, ionic, metallic, CE=0/2

1

1

IMF are weak / need little energy to break IMF / easy to overcome IMF

[15]

M6.

	Need to see 3 P–H bonds and one lone pair (ignore shape).	1	
(b)	Coordinate / dative If not coordinate / dative then chemical error CE=0 unless blank or covalent then M1 = 0 and mark on.	1	
	Pair of electrons on P(H₃) donated (to H+) Do not allow a generic description of a coordinate bond.	1	
(c)	109.5° / 109½ / 109° 28□ Allow answers in range between 109° to 109.5°	1	
(d)	Difference in electronegativity between P and H is too small Allow P not very electronegative / P not as electronegative as N, O and F / P not electronegative enough / P not one of the 3 most electronegative elements. Do not allow phosphine is not very electronegative.	1	[5]

M7.(a) Al + 1.5Cl $_2$ \rightarrow AlCl $_3$ Accept multiples.

Also $2AI + 3CI_2 \rightarrow AI_2CI_6$ Ignore state symbols.

(b) Coordinate / dative (covalent)

If wrong CE=0/2 if covalent mark on.

1

Electron pair on CI - donated to AI(CI 3)

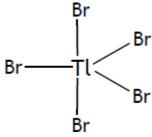
QoL

Lone pair from CI⁻ not just CI Penalise wrong species.

1

(c) Al₂Cl₆ or AlBr₃

Allow Br₃Al or Cl₆Al₂ Upper and lower case letters must be as shown. Not 2AlCl₃


1

(d) SiCl₄ / silicon tetrachloride

Accept silicon(4) chloride or silicon(IV) chloride. Upper and lower case letters must be as shown. Not silicon chloride.

1

(e)

Accept shape containing 5 bonds and no lone pairs from TI to each of 5 Br atoms.

Ignore charge.

1

Trigonal bipyramid(al)

1

(f) (i) CI — TI — CI

Accept this linear structure only with no lone pair on TI

(ii) (Two) bonds (pairs of electrons) repel equally / (electrons in) the bonds repel to be as far apart as possible

Dependent on linear structure in (f)(i).

Do not allow electrons / electron pairs repel alone.

(g) Second

[10]